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TECHNOLOGY TRENDS
LOGIC SCALING PARADIGM UNDER PRESSURE
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Happy scaling era

# transistors per area
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Less happy scaling era

Still doubles but device

scaling provides diminishing returns

N
O

W

2017 2019 2021 2023 20252005

Challenging scaling era

At least one of the metrics

(cost, performance, area) is

broken

20nm: First sign of trouble

Double patterning (cost !)

Planar device runs out of steam

14nm: FinFET

FinFET device saves the day

10nm

7nm

5nm

5nm: At last ...

EUV reduces cost

3nm: Double whammy

Double patterning EUV

Fin based device runs out of steam

3.5nm

2.5nm
1.75nm

10-7nm: More trouble

Multi-patterning cost escalates

2.5nm-beyond

Vertical nanowireDTCO

DTCO = Design-Technology Co-Optimization
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DIMENSIONAL SCALING LOOSES STEAM
NEED TO FIND OTHER MEANS FOR SCALING
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SCALING BOOSTERS TO ENABLE FURTHER SCALING
DIFFERENT GENERATIONS

N10
(64CPP, 48MP, 36FP)

N7
(56CPP, 40MP, 30FP)

N5
(42CPP, 32MP, 24FP)

x0.73
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N3
(40CPP, 24MP, 20FP)

x0.71

x0.84

x0.47

2nd gen scaling boosters:

Self aligned Block
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Fully self-aligned Via 3nd gen scaling boosters:
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1st gen scaling boosters:

MOL Supply tap

M0A MOA

16nm

60% = 9.6nm 60% = 9.6nm

MINT

 16nm 

MINT

 16nm 

3.1nm

5nm

6.4nm+16nm+6.4nm

= 28.8nm

VINTVINT

In-line merge via
g
a
te

V0
Cut

No staircase 

 can be an issue for depo

V0

SA gate contact
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TECHNOLOGY TRENDS
LOGIC SCALING PARADIGM UNDER PRESSURE
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Challenging scaling era

At least one of the metrics

(cost, performance, area) is

broken

20nm: First sign of trouble

Double patterning (cost !)

Planar device runs out of steam

14nm: FinFET

FinFET device saves the day

10nm

7nm

5nm

5nm: At last ...

EUV reduces cost

3nm: Double whammy

Double patterning EUV

Fin based device runs out of steam

3.5nm

2.5nm
1.75nm

10-7nm: More trouble

Multi-patterning cost escalates

2.5nm-beyond

Vertical nanowireDTCO

DTCO = Design-Technology Co-Optimization

STCO

?

5



CONFIDENTIAL

NEW DEVICE ARCHITECTURES MAINTAIN SRAM SCALING

iN7

?
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VERTICAL INTEGRATION INCREASES SRAM DENSITY

Complementary FET

Vertical FET

Stacked

Vertical FET
Vertical extension works well for the SRAM 

because it is naturally regular
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VERTICAL GAA NW TRANSISTORS
DIMENSIONS

3D views Cross-section views

PNW=18 - 24 nm

Lg = 20-30 nm

(100)

<100>

x

x’

NWD = 5-10 nm

Need to control the alignement of the gate and the S/D junctions
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BL
BL

VDD

VSS

VSS

WLA

WLB

3D VIEWS OF STACKED SRAMSFirst gate Second gate

Metal 1 Metal 2
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SRAM CAN BECOME COMPETITIVE TO DRAM IN SIZE
THANKS TO VERTICAL INTEGRATION

10



CONFIDENTIAL

THE CMOS TECHNOLOGY ANTAGONISM
LOGIC AND MEMORY NEED TO SCALE TOGETHER

LOGIC

 STANDARD CELLS

MEMORY (on-chip)

 SRAM

Moore’s Law Scaling requires both to scale
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VERTICAL LOGIC... REALLY?
POTENTIAL GAINS IN LOGIC ARE NOT EVIDENT...

Requires heavy interconnect

 2x$

Monolithic 3D 

Bottom electrode “hidden”

 Standard cell won’t scale

Vertical Device
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COMPLEMENTARY FET SCALING
THE FIRST STEP TOWARDS FUNCTIONAL SCALING

Stacked p-n LNW to fold a CMOS 

structure into a 5 terminal 

Complementary FET device (CFET)

G
Dn

Sn

Sp

Dp

Requires complex 2 level MOL integration

Common gate for p and n devices

Sp
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Dn
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COMPARISON WITH CONVENTIONAL 6T CELL
CFET ENABLES REDUCTION TO 4T CELLS

6T
(SDB, SAGC, out-bound PR)

 33% area reduction from 6T

 Less M1 usage in the cell

4T P-N stacked
(SDB, SAGC, out-bound PR)
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KEY STEPS IN THE CFET FLOW
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INNER SPACER AND S/D MOL STACK AS KEY CHALLENGES

Fin Etch with 

Cut

Dummy Gate 

w spacer

n-Source-Drain 

Grow

Metal Fill and 

recess

p-Source-Drain 

Grow

Upper Trench 

Contact

SiGe Recess and

Inner Spacer

Inner spacer between 

largely spaced NWs

Dielectric growth 

between 2 metal 

electrodes
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MOORE’S LAW ON THE VERGE OF MORPHING
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What’s next?
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NEW 3D LOGIC PARADIGM FOR FUNCTIONAL SCALING
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NANOFABRIC BASED LOGIC

Global BEOL  Design Specific

Nanofabric  stacked scalable process

Baseline technology  “intelligence” in the 

fabric utilization
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FPGA

CLB CLB

CLB CLB

CLB

CLB

Primitive functions in a 

nanofabric structure

Different f_j tables

Decoder + 

MUX
Output Sensing + programing

inputoutput

Concept builds on the FPGA as a tile of functional primitives

Key is creating highest expressivity in a small area but no need for interconnect 

reconfigurability!
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LUT BASED CLB AS THE MOST COMPLETE SOLUTION
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ALLOWS EXPLORING THE REQUIRED FUNCTIONAL GRANULARITY
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decoder

Different f_j tables

- Expressivity driven by input/output characteristic 

of the primitive

- LUT can emulate all possible logic truth tables

 LUT based Synthesis with standard 

BEOL PnR

Decoder + 

MUX
Output Sensing + programing

inputoutput
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FUNCTIONAL SCALING AS A SCALING VECTOR
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PARTITION INTO LARGER PRIMITIVES 

Standard cell implementation LUT-K

implementation
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DFF area

DFF area

LUT size - K

 Explore functional scaling as a potential universal 

scaling vector for logic

 Develop new optimization for synthesis (collaboration 

with EPFL and Univ Utah)

Flatten uProc design shows limited 

performance

8b-ALU exploits the availability of 

large primitives.
Comparison of LUT to standard cell implementation
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OTHE CLB IMPLEMENTATIONS
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GATE ARRAYS (PLA) CAN EMULATE A LOGIC FUNCTION

CLB

Only sum of products can be emulated

 High entropy (NAND/NOR)

 Lots of “waste” in the physical implementation

 Mask-programmed (requires seq process)
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RESTRICTION ON THE OUTPUT SIZE
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DIFFERENT IMPLEMENTATIONS LEAD TO DIFFERENT I/O CONFIG
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Multiple functions are created from 

the same inputs by duplicating the 

LUT structures with different truth 

tables

LUT approach PLA approach

The PLA offers by construction 

multiple output SoP (O[j])

BBD Matrices

Network of LUTs can implement 

multiple O[j] even in a fixed network

O[j]I[k]

... Others?
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3D IMPLEMENTATION OF A FABRIC
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ORIENTATION OF THE CHANNEL IMPACTS PRIMITIVE

inputs

Outputs 

(NAND)

inputs

Outputs 

(NOR)

Stacked LFET Stacked VFET

NOR has a preference for Lateral channels and are most likely more efficient
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FIRST ATTEMPTS TO EXPLORE MANUFACTURABILITY
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BUILD ON WHAT WE CAN DO TODAY

Build an array of FETs with “classical” process 

steps 

...but interestingly we can deviate from typical 

standard cell layout paradigms and foresee 

relaxation of some dimensions to best exploit the 

3D
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NANOFABRIC ARCHITECTURE
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TOP-DOWN AND BOTTOM-UP APPROACH
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System architecture

Circuits

Manufacturing

3D circuit primitive design: LUT, PLA, ... 

Different f_j tables

Decoder + 

MUX
Output Sensing + programing

inputoutput

Large area gain potentials?

?

Efficient and manufacturable

device stacking for logic

Need to demonstrate the scaling 

potentials!
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